UNIVERSITE POLYTECH
DELORRAINE o B NANCY

/ UNIVERSITE \
@ DE LORRAINE O uanGy

NANCY
Model-based design of

digital controllers

Hugues GARNIER

\ hugues.garnier@univ-lorraine.fr /

1 H. Garnier




WL

DE LORRAINE

UNIVERSITE ; > POLYTECH®
NANCY

The e-mail of the day

From: XXX.YYYY@etu.univ-lorraine.fr

Subject: Request for advice on controller design
Date: February 15, 2023 at 23:12:51 UTC+1
To: Hugues Garnier

Good morning; sir,

I hope you are well. I'm contacting you because I'd like your advice on designing a controller to
control the vertical speed of a drone.
I'm currently working on my study project. The aim is to implement standard controllers such as P, PI
and PID. But what bothers me in my conception of PI and PID correctors is that there is a delay in the
transfer function.
My transfer function looks like:

G(z)= z"(-2) *(-0.023608/(z-0.6065))
So I'd like to determine the Kp, Ki and Kd gains with a concrete method so that I can explain my
reasoning. I had thought of the pole placement method, but the calculations quickly become very
complicated. I don't have any other ideas in mind, apart from a trial-and-error approach, but I'd like
to avoid this method.
Could you tell me another way of designing these controllers?
Thank you very much for your reply.

Best regards,
XXX YYYY
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* Two types of approach:
- Digital methods
- Methods for discretizing a continuous-time controller (including PID)

Approaches for model-based digital control design

ZOH

3 H. Garnier



UNIVERSITE POLYTECH®
DE LORRAINE NANCY

Approaches for model-based digital control design
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* These digital methods are preferred when
— Fast sampling is not possible

- A sampled model G(z) is determined from G(s) or directly identified from
input/output data

- The control system is designed based on the sampled model

* Examples: RST control, internal model control, predictive control
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Closed-loop digital control block-diagram

The search for a control law (and therefore for C(z)) using a full digital

approach is based on:

- asampled model G(z) of the cascaded ZOH + sampled model +
sensor + sampler components

— the type of external signals: reference R (z), disturbance D(z)

R(2)

1+C(2)G(z) °

D(z)
&(z) U(z) X Y(@2)
C(z) >» G(z) —>
y(z)=-S2)C(2) y () 1 (z)

+ D
1+C(z)G(z)
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1. Determination of G(z) by discretization of G(s) (ZOH Diseretizati
. . (e . . 1scretizaiion
method) or identification from input/output data by the ZOH method
R(z) + _ &2 Uz + ~ 7 ! Y(z)
C(z) > G(z) ! >
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/ Control design by digital methods

R (z) .

AN

u(k)=f(s(k))

R (k) +

2. Determination of C(z) from G(z). Different approaches exist
£(2) U(z) Y(2)
C(2) > G(2) >
3. Implementation of the control algorithm
g(k) Algorithm U(k) Q: y(k)
u(k)=f(a(k) &té@ >

\_
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Digital control design
using the reference model method

* Principle: impose that the closed-loop transfer function behaves as a
desired response of a transfer function F () (often 2nd order)

e Workflow

1. Determine a model G(z) by discretization of G(s) or identification
2. Determine the closed-loop transfer function
C(z)G(z
1+ c(:()z )c(;()z ) Fror (%)
3. Determine the controller parameters so that
Fror(2)
G(2)(1-Fop(2))

Fgr(2) =

C(z)=

Remarks

» A too restrictive choice of F. (z) can lead to an unfeasible controller: non-causal
or unstable

* Too fast dynamics of desired F, (z) can lead to control values with too large
amplitudes, damaging the equipment
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Transposition methods

Controller % .
desV

Discretization
methods

Discretization

* The design of digital controllers by transposition of continuous-time
controllers is preferred when:

— Fast sampling is possible
* Continuous-time control design methods are generally well mastered in
the industrial field: PID controllers, for example.

- Specifications are easier to interpret with continuous-time models than with
sampled models
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Digital control design by transposing
the continuous-time controller

* Methodology

1.

Design of a continuous-time controller C(s) by one of the
traditional design methods (PID controller or others) determined
from the system model G(s), enabling the specifications to be met

C(s)

Transpose the continuous-time transfer function C(s) into a digital
controller C(z) to obtain a digital control algorithm that comes as
close as possible to the behavior of continuous-time controller

C(s)

Discretization

=)

C(2)
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Digital control design by transposing

the continuous-time controller

1. Determination of C(s) from G(s).
Various approaches (PID, ...) exist (course S5)

Y: (S) +

&(s) U(s)

Y(s)

C(s) >  G(s)

2. Transpose C(s) to obtain C(z)
3. Implementation of the control algorithm

u(k)=f(s(k))

Ye (k) +

Transposition by

‘ ‘ discretization

&(k) u(k)

Algorithm Q
u(k)=H{e(k) > @L/té@

y(k)
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Discretization methods

There are many to choose from, including;:
- the impulse-invariant method
- the step-invariant method (= ZOH method)
- the matched pole-zero method
- the forward Euler approximation method
- the backward Euler approximation method

- the Tustin (or bilinear) approximation method

111t

* Watch Brian Douglas' video

* Discrete control #2: Discretize! Going from continuous to discrete domain

* Note
* The zero-order hold discretization method (zoh) to find C(z) from C(s) can be

used, but it is not the most suitable here, as there is no ZOH in front of the
controller!
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Some of the methods are available in Matlab

Command Window

>> help c2d
c2d Converts continuous—-time dynamic system to discrete time.

SYSD = ¢2d(SYSC,TS,METHOD) computes a discrete-time model SYSD with
sample time TS that approximates the continuous—time model SYSC.
The string METHOD selects the discretization method among the following:

‘zoh' Zero—-order hold on the inputs
‘foh' Linear interpolation of inputs
"impulse’ Impulse-invariant discretization
E=) 'tustin' Bilinear (Tustin) approximation.
'matched'’ Matched pole-zero method (for SISO systems only).

'least-squares' Least-squares minimization of the error between
frequency responses of the continuous and discrete
systems (for SISO systems only).

'damped"’ Damped Tustin approximation based on TRBDF2 formula

| (sparse models only).
The default is 'zoh' when METHOD is omitted. The sample time TS should
be specified in the time units of SYSC (see "TimeUnit" property).
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The matched pole-zero method

We know C(s). How can we deduce C(z) 77?7

We know the relationship between zands: Z = eSTs

1. Computation of the continuous-time zeros z. and poles p, of C(s)
2. Determination of the discrete-time zeros z, and p, poles of C(2)

ZTs

Zg = € pg= ePe's

3. Add a zero at z = -1 if relative order (deg. den. - deg num.) of C(s) >1
4. Adjust the steady-state gain if necessary, such as

c@| _ =ce)|_,

In Matlab: Cd=c2d(C,Ts, 'matched')

14
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Differentiation approximations

A transfer function represents a differential equation. It is natural to obtain a

difference equation by approximating the derivatives with a forward difference
(Euler’s method)

dx(t) N x(t+h)-x(t) g-1

palt) = = il
or a backward difference
palf) = dx(t) o x(t) - x{t — h) _4- 1 ()

di h gh

In the transform variables, this corresponds to replacing s by (z - 1)/k
or (z — 1)/zh. Section 2.8 shows that the variables z and s are related in some

respects as z = exp(sh). The difference approximations correspond to the series
expansions

z=e"~1+8h  (Euler's method) (8.1)

z=etn ] }8 ; {Backward difference) (8.2)

Another approximation, which corresponds to the trapezoidal method for
numerical integration, is

o Y +sh/2

ORI T

(Trapezoidal method) (8.3)
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Euler forward and backward approximations

We know C(s). How can we deduce C(z) ????

We know the relationship between z and s :

z = e5Ts

S = T—In( Z) Non-linear relationship!
e

-1
sT s=2~ 1 = 1-2z Forward approximation
z-e"Te ~ 14T s4... Yy S=7

-1
e I,z
_1
Z= 1T = 1 ::> s=Z= 1 = Iz Backward approximation
e_s e 1—TeS+... TeZ Te
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Conserve la stabilité : image de {s

Réponse fréquentielle : z = e/« Te
1 —eJwle

= Jwe

e
\ Retard + distorsion

&

€ C / Re(s) < 0}

N

_jwT.25in(wTe/2)
wTe/2

/
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Tustin or bilinear approximation

We know C(s). How can we deduce C(z) ????

We know the relationship between z and

S: Z= eSTe
S = iIn( z) Non-linear relationship!
Te

sT, T

e_e T+-&s+... ;
Z= ~_ 2 2z-1 21-z Tustin approximation

~sT, T s = = 1 s

e 2 1—?es+... Toz+1 T 147 or briinear
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/Stability and distortion of the Tustin approximatim

Réponse fréquentielle : z = e/ e
21— e—ije/2

Te 1+ ewTe/2

\ Pas de retard mais distorsion

Conserve la stabilité : image de {s € C / Re(s) < 0}

R

@

. tan(wT,./2)

:Jw

wTe/2

/

19

H. Garnier



WL

UNIVERSITE
DE LORRAINE

; ’ POLYTECH’
NANCY

Design of a digital conytroller by transposition of a

continuous-time controller - Example

Let T, =0.3s and the continuous-time controller be:

1+0,53s

C(s)=
(s) 1+0,21s

o 0,53z-0,23
C(z)== :
Forward approximation (z) 0.212+0.09
o 0,83z-0,53
Delayed t C(z)=>2 ’
elayed approximation (z) 0.512+0 21
. . . 1,89z -1,06
C(z)=- ’
Tustin approximation (z) z+017

In Matlab: Cd=c2d(C,Ts,'tustin")
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