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The e-mail of the day

From: XXX.YYYY@etu.univ-lorraine.fr
Subject: Request for advice on controller design 
Date: February 15, 2023 at 23:12:51 UTC+1
To: Hugues Garnier

Good morning, sir, 
I hope you are well. I'm contacting you because I'd like your advice on designing a controller to 
control the vertical speed of a drone. 
I'm currently working on my study project. The aim is to implement standard controllers such as P, PI 
and PID. But what bothers me in my conception of PI and PID correctors is that there is a delay in the 
transfer function.
My transfer function looks like:  

G(z)= z^(-2) *( -0.023608/(z-0.6065))
So I'd like to determine the Kp, Ki and Kd gains with a concrete method so that I can explain my 
reasoning. I had thought of the pole placement method, but the calculations quickly become very 
complicated. I don't have any other ideas in mind, apart from a trial-and-error approach, but I'd like 
to avoid this method. 
Could you tell me another way of designing these controllers? 
Thank you very much for your reply. 
Best regards, 
XXX YYYY
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Approaches for model-based digital control design

• Two types of approach:
– Digital methods
– Methods for discretizing a continuous-time controller (including PID) 
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• These digital methods are preferred when
– Fast sampling is not possible
– A sampled model G(z) is determined from G(s) or directly identified from 

input/output data
– The control system is designed based on the sampled model

• Examples: RST control, internal model control, predictive control
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Closed-loop digital control block-diagram

• The search for a control law (and therefore for C(z)) using a full digital 
approach is based on:

– a sampled model G(z) of the cascaded ZOH + sampled model + 
sensor + sampler components

– the type of external signals: reference R (z), disturbance D(z)

+

-
C(z) G(z)

Y(z)U(z)R (z)

D(z)

+
+e(z)

Y(z) = C(z)G(z)
1+C(z)G(z)

Yc(z)+
1

1+C(z)G(z)
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Control design by digital methods

+

-
C(z) G(z)

Y(z)R (z) e(z)

Discretization
by the ZOH method

U(z)

+

-
C(z)

Y(z)R (z) e(z)
G(s)Bo (s)

TsTs

U(z)

1. Determination of G(z) by discretization of G(s) (ZOH 
method) or identification from input/output data
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+

-

Algorithm
u(k)=f(e(k))

y(k)R (k) e(k) u(k)

+

-
C(z) G(z)

Y(z)R (z) e(z) U(z)

2. Determination of C(z) from G(z). Different approaches exist

3. Implementation of the control algorithm
  u(k)=f(e(k))

Control design by digital methods 
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• Principle: impose that the closed-loop transfer function behaves as a 
desired response of a transfer function Fref (z) (often 2nd order)

• Workflow
1. Determine a model G(z) by discretization of G(s) or identification
2. Determine the closed-loop transfer function

3. Determine the controller parameters so that 

Remarks
• A too restrictive choice of Fref (z) can lead to an unfeasible controller: non-causal 

or unstable
• Too fast dynamics of desired Fref (z) can lead to control values with too large 

amplitudes, damaging the equipment

Digital control design 
using the reference model method

FBF (z) =
C(z)G(z)
1+C(z)G(z)

= Fref (z)

C(z) =
Fref (z)

G(z) 1−Fref (z)( )
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Transposition methods

• The design of digital controllers by transposition of continuous-time 
controllers is preferred when:

– Fast sampling is possible
• Continuous-time control design methods are generally well mastered in 

the industrial field: PID controllers, for example.
– Specifications are easier to interpret with continuous-time  models than with 

sampled models 
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• Methodology
1. Design of a continuous-time controller C(s) by one of the 

traditional design methods (PID controller or others) determined 
from the system model G(s), enabling the specifications to be met

2. Transpose the continuous-time transfer function C(s) into a digital 
controller C(z) to obtain a digital control algorithm that comes as 
close as possible to the behavior of continuous-time controller

Digital control design by transposing
the continuous-time controller

C(z)C(s)

C(s)

Discretization
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+

-

Algorithm
u(k)=f(e(k))

y(k)yc (k) e(k) u(k)

2. Transpose C(s) to obtain C(z) 
3. Implementation of the control algorithm
  u(k)=f(e(k))

+

-
C(s) G(s)

Y(s)Yc (s) e(s) U(s)

Digital control design by transposing 
the continuous-time controller

1. Determination of C(s) from G(s). 
Various approaches (PID, ...) exist (course S5)

Transposition by 
discretization
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Discretization methods
There are many to choose from, including:
 - the impulse-invariant method
 - the step-invariant method (= ZOH method)
 - the matched pole-zero method
 - the forward Euler approximation method
 - the backward Euler approximation method
 - the Tustin (or bilinear) approximation method

• Watch Brian Douglas' video
• Discrete control #2: Discretize! Going from continuous to discrete domain

• Note
• The zero-order hold discretization method (zoh) to find C(z) from C(s) can be 

used, but it is not the most suitable here, as there is no ZOH in front of the 
controller! 
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Some of the methods are available in Matlab
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The matched pole-zero method

1. Computation of the continuous-time zeros zc and poles pc of C(s)
2. Determination of the discrete-time zeros zd and pd poles of C(z) 

𝑧! = 𝑒"!#" 𝑝!= 𝑒$!#"

3. Add a zero at z = -1 if relative order (deg. den. - deg num.) of C(s) >1 
4. Adjust the steady-state gain if necessary, such as 

%𝐶(𝑧)
!"#

= %𝐶(𝑠)
$"%

In Matlab: Cd=c2d(C,Ts,'matched')

We know C(s). How can we deduce C(z) ???? 

We know the relationship between z and s : 𝑧 = 𝑒$&!



H. Garnier15

Differentiation approximations
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We know C(s). How can we deduce C(z) ???? 

Euler forward and backward approximations

s = 1
Te
ln(z) Non-linear relationship!

z = esTe ≈1+Tes +…
s = z −1

Te
=
1− z−1

Tez
−1

Forward approximation

We know the relationship between z and s :

z = 1

e−sTe
=

1
1−Tes +…

s = z −1
Tez

=
1− z−1

Te
Backward approximation

𝑧 = 𝑒$&!
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Stability and distortion of the backward approximation
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We know C(s). How can we deduce C(z) ???? 

Tustin or bilinear approximation

s = 1
Te
ln(z) Non-linear relationship!

Tustin approximation 
or bilinear

z = esTe
We know the relationship between z and 

s :

z = e
sTe
2

e
−sTe
2

≈
1+
Te
2
s +…

1−
Te
2
s +…

s = 2
Te

z −1
z +1

=
2
Te

1− z−1

1+ z−1
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Stability and distortion of the Tustin approximation
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Design of a digital conytroller by transposition of a 
continuous-time controller - Example

Let Ts =0.3s and the continuous-time controller be:

Forward approximation

Delayed approximation

Tustin approximation

 In Matlab: Cd=c2d(C,Ts,'tustin')

C(s ) = 1+0,53s
1+0,21s

C(z) = 0,53z −0,23
0,21z +0,09

C(z) = 0,83z −0,53
0,51z +0,21

C(z) = 1,89z −1,06
z +0,17


